def __init__(self, model, filename, mcmc=default_mcmc, headers=1,
ph_units="mrad", cc_modes=2, decomp_poly=4, c_exp=1.0,
log_min_tau=-3, guess_noise=False, keep_traces=False,
ccdt_priors='auto', ccdt_cfg=None):
self.model = model
self.filename = filename
self.mcmc = mcmc
self.headers = headers
self.ph_units = ph_units
self.cc_modes = cc_modes
self.decomp_poly = decomp_poly
self.c_exp = c_exp
self.log_min_tau = log_min_tau
self.guess_noise = guess_noise
self.keep_traces = keep_traces
self.ccd_priors = ccdt_priors
self.ccdtools_config = ccdt_cfg
if model == "CCD":
if self.ccd_priors == 'auto':
self.ccd_priors = self.get_ccd_priors(config=self.ccdtools_config)
print("\nUpdated CCD priors with new data")
self.start()
# def print_resul(self):
# #==============================================================================
# # Impression des résultats
# pm, model, filename = self.pm, self.model, self.filename
# print('\n\nInversion success!')
# print('Name of file:', filename)
# print('Model used:', model)
# e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])
# v_keys = [e.replace("_std", "") for e in e_keys]
# labels = ["{:<8}".format(x+":") for x in v_keys]
# np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
# for l, v, e in zip(labels, v_keys, e_keys):
# print(l, pm[v], '+/-', pm[e], np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
评论列表
文章目录