def plot_swap_subject_cm(swappy,title,name):
from sklearn.metrics import confusion_matrix
import numpy as np
subs = swappy.exportSubjectData()
labs = getLabelReal(subs)
# Compute confusion matrix
cnf_matrix = confusion_matrix(labs['actual'], labs['predicted'])
np.set_printoptions(precision=2)
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['Bogus','Real'],
normalize=False,
title=title)
plt.savefig(name)
plt.show()
#import pandas as pd
#ps = pd.Series([(labs['actual'][x],labs['predicted'][x]) for x in range(0, len(labs['actual']))])
#counts = ps.value_counts()
#counts
评论列表
文章目录