def main():
args = parse_args()
print('Called with args:')
print(args)
lang_db = get_language_model(args.lang_name)
imdb = get_imdb(args.imdb_name)
# Get words in space
vocabulary = imdb.get_labels(args.space)
# Get features for words
wv = [lang_db.word_vector(w) for w in vocabulary]
from sklearn.metrics.pairwise import cosine_similarity
from scipy import spatial
#spatial.distance.cosine(dataSetI, dataSetII)
tsne = TSNE(n_components=2, random_state=0)
np.set_printoptions(suppress=True)
Y = tsne.fit_transform(wv)
plt.scatter(Y[:, 0], Y[:, 1])
for label, x, y in zip(vocabulary, Y[:, 0], Y[:, 1]):
plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')
plt.show()
visualize_space.py 文件源码
python
阅读 38
收藏 0
点赞 0
评论 0
评论列表
文章目录