def plot_change(results):
''' This plot shows how each algorithm changes after each iteration. '''
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
n_range = np.linspace(0, 50, 11)
model_names = results[0].keys()
model_range = range(len(model_names))
for idx, model in enumerate(model_names):
if idx == 0:
pass
else:
ax1.plot(n_range, np.insert(np.absolute(np.diff(results[0][model])), 0, results[0][model][0]), label=model)
ax2.plot(n_range, np.insert(np.absolute(np.diff(results[1][model])), 0, results[1][model][0]), label=model)
ax1.set_title('Root Mean Squared Error')
ax2.set_title('Time in Seconds')
plt.xlabel('Number of Iterations')
plt.legend()
plt.show()
评论列表
文章目录