def compute_mean_ci(interp_sens, confidence = 0.95):
sens_mean = np.zeros((interp_sens.shape[1]),dtype = 'float32')
sens_lb = np.zeros((interp_sens.shape[1]),dtype = 'float32')
sens_up = np.zeros((interp_sens.shape[1]),dtype = 'float32')
Pz = (1.0-confidence)/2.0
for i in range(interp_sens.shape[1]):
# get sorted vector
vec = interp_sens[:,i]
vec.sort()
sens_mean[i] = np.average(vec)
sens_lb[i] = vec[int(math.floor(Pz*len(vec)))]
sens_up[i] = vec[int(math.floor((1.0-Pz)*len(vec)))]
return sens_mean,sens_lb,sens_up
评论列表
文章目录