def load_cv_folds(model_name):
models = []
for i in range(5):
net = np.load(paths.predictions + model_name + '-split_{}.npz'.format(i))
net = {
'train': np.average(net['train'], axis=0),
'val': np.average(net['val'], axis=0),
'test': np.average(net['test'], axis=0)
}
models.append(net)
labels_df = labels.get_labels_df()
kf = sklearn.model_selection.KFold(n_splits=5, shuffle=True, random_state=1)
split = kf.split(labels_df)
folds = []
for i, ((train_idx, val_idx), net) in enumerate(zip(split, models)):
val = labels_df.ix[val_idx]
train = labels_df.ix[train_idx]
folds.append((net, val, train))
print(i)
return folds
# load_cv_folds takes the model name
submit_predictions.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录