def generate_quadratic_parameters(trials):
"""ax^2 + b"""
def transform(x):
"""
transform
x1 ---> 1 x1**2
"""
ones = np.ones(len(x))
x1 = x[:, 0]
x1_sqr = x1 ** 2
return np.stack([ones, x1_sqr], axis=1)
new_trials = [
DataML((training_set.z, training_set.y), transform)
for training_set in trials ]
weights = [ linear_percepton(training_set.z, training_set.y) for training_set in new_trials ]
return np.array(weights)
评论列表
文章目录