def get(self, X):
X = np.array(X)
X_nan = np.isnan(X)
imputed = self.meanImput(X.copy())
if len(self.estimators_) > 1:
for i, estimator_ in enumerate(self.estimators_):
X_s = np.delete(imputed, i, 1)
y_nan = X_nan[:, i]
X_unk = X_s[y_nan]
result_ = []
if len(X_unk) > 0:
for unk in X_unk:
result_.append(estimator_.predict(unk))
X[y_nan, i] = result_
return X
评论列表
文章目录