def test_optimalk(parallel_backend, n_jobs, n_clusters):
"""
Test core functionality of OptimalK using all backends.
"""
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from gap_statistic import OptimalK
# Create optimalK instance
optimalK = OptimalK(parallel_backend=parallel_backend, n_jobs=n_jobs)
# Create data
X, y = make_blobs(n_samples=int(1e3), n_features=2, centers=3)
suggested_clusters = optimalK(X, n_refs=3, cluster_array=np.arange(1, 10))
assert np.allclose(suggested_clusters, n_clusters, 2), ('Correct clusters is {}, OptimalK suggested {}'
.format(n_clusters, suggested_clusters))
评论列表
文章目录