def sample_crop(self, n):
kx = np.array([len(x) for x in self.maps_with_class])
class_hist = np.random.multinomial(n, self.class_probs * (kx != 0))
class_ids = np.repeat(np.arange(class_hist.shape[0]), class_hist)
X = []
for class_id in class_ids:
for i in range(20):
random_image_idx = np.random.choice(self.maps_with_class[class_id])
if random_image_idx < 25:
break
x = self.kde_samplers[random_image_idx][class_id].sample()[0]
x /= self.mask_size
x = np.clip(x, 0., 1.)
return x, class_id, random_image_idx
X.append(x)
return X
b3_data_iter.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录