def __init__(self,p=[-0.9594,4.294],pprior=None,
N=50,x=None,**kwargs):
f=lambda t,s: np.array([t-s*abs(t),t+s*abs(t)])
if pprior is None:
self.pprior={'p'+str(i) : f(t,10) for i,t in enumerate(p) }
self.label=self.pprior.keys()
self.ndim=len(p)
self.p=p
if x is None:
self.N=N
self.x = np.sort(10*np.random.rand(N))
else:
self.N=len(x)
self.x=x
self.y,self.yerr=self.data(**kwargs)
# As prior, we assume an 'uniform' prior (i.e. constant prob. density)
评论列表
文章目录