def compute_group(cls, data, scales, **params):
data = data.sort_values('x')
n = params['n']
x_unique = data['x'].unique()
if len(x_unique) < 2:
# Not enough data to fit
return pd.DataFrame()
if data['x'].dtype.kind == 'i':
if params['fullrange']:
xseq = scales.x.dimension()
else:
xseq = np.sort(x_unique)
else:
if params['fullrange']:
rangee = scales.x.dimension()
else:
rangee = [data['x'].min(), data['x'].max()]
xseq = np.linspace(rangee[0], rangee[1], n)
return predictdf(data, xseq, **params)
评论列表
文章目录