def _sample_weights_precision(self):
prior_observations = .1 * self.position_size
shape = prior_observations + self.position_size / 2
rate = prior_observations / self._weights_precision_value + np.mean(self._weight_norm_ema) / 2
scale = 1. / rate
sample = np.clip(np.random.gamma(shape, scale), .1, 10.)
return sample
评论列表
文章目录