def forward_prop(self):
# backprop
self.output_error = np.sum(self.errors * self.weights, axis=0).reshape(1, -1)
self.output_error /= self.weights.shape[0]
self.output_error *= self.derivative(self.output_raw, self.output_error)
# clip gradient to not exceed zero
self.output_error[self.output_raw > 0] = \
np.maximum(-self.output_raw[self.output_raw > 0],self.output_error[self.output_raw > 0])
self.output_error[self.output_raw < 0] = \
np.minimum(-self.output_raw[self.output_raw < 0],self.output_error[self.output_raw < 0])
RankOrderedAutoencoder.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录