def model(self, features, labels):
x = features["observation"]
x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu)
x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu)
x = tf.contrib.layers.flatten(x)
x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu)
x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu)
logits = tf.contrib.layers.fully_connected(x, 1, activation_fn=None)
prediction = tf.sigmoid(logits)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.expand_dims(labels, axis=1)))
train_op = tf.contrib.layers.optimize_loss(
loss, tf.contrib.framework.get_global_step(), optimizer='Adam',
learning_rate=0.01)
tf.add_to_collection('prediction', prediction)
tf.add_to_collection('loss', loss)
return prediction, loss, train_op
评论列表
文章目录