def transform(self, images):
if self._aug_flag:
transformed_images =\
np.zeros([images.shape[0], self._imsize, self._imsize, 3])
ori_size = images.shape[1]
for i in range(images.shape[0]):
h1 = np.floor((ori_size - self._imsize) * np.random.random())
w1 = np.floor((ori_size - self._imsize) * np.random.random())
cropped_image =\
images[i][w1: w1 + self._imsize, h1: h1 + self._imsize, :]
if random.random() > 0.5:
transformed_images[i] = np.fliplr(cropped_image)
else:
transformed_images[i] = cropped_image
return transformed_images
else:
return images
datasets.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录