def plot_confusion_matrix(cm, clf_target_names, title='Confusion matrix', cmap=plt.cm.jet):
target_names = map(lambda key: key.replace('_','-'), clf_target_names)
for idx in range(len(cm)):
cm[idx,:] = (cm[idx,:] * 100.0 / np.sum(cm[idx,:])).astype(np.int)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
# plt.matshow(cm)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(clf_target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
# plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
评论列表
文章目录