def collect_point_label(anno_path, out_filename, file_format='txt'):
""" Convert original dataset files to data_label file (each line is XYZRGBL).
We aggregated all the points from each instance in the room.
Args:
anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
out_filename: path to save collected points and labels (each line is XYZRGBL)
file_format: txt or numpy, determines what file format to save.
Returns:
None
Note:
the points are shifted before save, the most negative point is now at origin.
"""
points_list = []
for f in glob.glob(os.path.join(anno_path, '*.txt')):
cls = os.path.basename(f).split('_')[0]
if cls not in g_classes: # note: in some room there is 'staris' class..
cls = 'clutter'
points = np.loadtxt(f)
labels = np.ones((points.shape[0],1)) * g_class2label[cls]
points_list.append(np.concatenate([points, labels], 1)) # Nx7
data_label = np.concatenate(points_list, 0)
xyz_min = np.amin(data_label, axis=0)[0:3]
data_label[:, 0:3] -= xyz_min
if file_format=='txt':
fout = open(out_filename, 'w')
for i in range(data_label.shape[0]):
fout.write('%f %f %f %d %d %d %d\n' % \
(data_label[i,0], data_label[i,1], data_label[i,2],
data_label[i,3], data_label[i,4], data_label[i,5],
data_label[i,6]))
fout.close()
elif file_format=='numpy':
np.save(out_filename, data_label)
else:
print('ERROR!! Unknown file format: %s, please use txt or numpy.' % \
(file_format))
exit()
评论列表
文章目录