def show_embedding(self,name,save_model="model.ckpt",meta_path='metadata.tsv'):
self._build()
self._write_meta()
from tensorflow.contrib.tensorboard.plugins import projector
# Use the same LOG_DIR where you stored your checkpoint.
with tf.Session() as sess:
self.sess = sess
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
summary_writer = tf.summary.FileWriter(self.flags.log_path, sess.graph)
saver = tf.train.Saver()
saver.save(sess, os.path.join(self.flags.log_path, save_model), 0)
# Format: tensorflow/contrib/tensorboard/plugins/projector/projector_config.proto
config = projector.ProjectorConfig()
# You can add multiple embeddings. Here we add only one.
embedding = config.embeddings.add()
embedding.tensor_name = name
# Link this tensor to its metadata file (e.g. labels).
embedding.metadata_path = os.path.join(self.flags.log_path, meta_path)
# Saves a configuration file that TensorBoard will read during startup.
projector.visualize_embeddings(summary_writer, config)
评论列表
文章目录