def get_calibration_metrics(model, data):
scores = (data['X'] * data['Y']).dot(model)
#distinct scores
#compute calibration error at each score
full_metrics = {
'scores': float('nan'),
'count': float('nan'),
'predicted_risk': float('nan'),
'empirical_risk': float('nan')
}
cal_error = np.sqrt(np.sum(a*(a-b)^2)) ( - full_metrics['empirical_risk'])
summary_metrics = {
'mean_calibration_error': float('nan')
}
#counts
#metrics
#mean calibration error across all scores
pass
评论列表
文章目录