def prepare(data):
num = len(data)
dim = data.shape[1]//2
print("in prepare: ",data.shape,num,dim)
pre, suc = data[:,:dim], data[:,dim:]
suc_invalid = np.copy(suc)
random.shuffle(suc_invalid)
diff_valid = suc - pre
diff_invalid = suc_invalid - pre
inputs = np.concatenate((diff_valid,diff_invalid),axis=0)
outputs = np.concatenate((np.ones((num,1)),np.zeros((num,1))),axis=0)
print("in prepare: ",inputs.shape,outputs.shape)
io = np.concatenate((inputs,outputs),axis=1)
random.shuffle(io)
train_n = int(2*num*0.9)
train, test = io[:train_n], io[train_n:]
train_in, train_out = train[:,:dim], train[:,dim:]
test_in, test_out = test[:,:dim], test[:,dim:]
print("in prepare: ",train_in.shape, train_out.shape, test_in.shape, test_out.shape)
return train_in, train_out, test_in, test_out
评论列表
文章目录