def logpdf(self, samples):
'''
Calculates the log of the probability density function.
Parameters
----------
samples : array_like
n-by-2 matrix of samples where n is the number of samples.
Returns
-------
vals : ndarray
Log of the probability density function evaluated at `samples`.
'''
samples = np.copy(np.asarray(samples))
samples = self.__rotate_input(samples)
inner = np.all(np.bitwise_and(samples > 0.0, samples < 1.0), axis=1)
outer = np.invert(inner)
vals = np.zeros(samples.shape[0])
vals[inner] = self._logpdf(samples[inner, :])
# Assign zero mass to border
vals[outer] = -np.inf
return vals
评论列表
文章目录