def gen_samples(self, z0=None, n=32, batch_size=32, use_transform=True):
assert n % batch_size == 0
samples = []
if z0 is None:
z0 = np_rng.uniform(-1., 1., size=(n, self.nz))
else:
n = len(z0)
batch_size = max(n, 64)
n_batches = int(np.ceil(n/float(batch_size)))
for i in range(n_batches):
zmb = floatX(z0[batch_size * i:min(n, batch_size * (i + 1)), :])
xmb = self._gen(zmb)
samples.append(xmb)
samples = np.concatenate(samples, axis=0)
if use_transform:
samples = self.inverse_transform(samples, npx=self.npx, nc=self.nc)
samples = (samples * 255).astype(np.uint8)
return samples
评论列表
文章目录