def make_train_test_split(prms):
'''
# I will just make one split and consider the last 5% of the iamges as the val images.
# Randomly sampling in this data is a bad idea, because many images appear together as
# pairs. Selecting from the end will maximize the chances of using unique and different
# imahes in the train and test splits.
'''
# Read the source pairs.
fid = open(prms['paths']['pairList']['raw'],'r')
lines = fid.readlines()
fid.close()
numIm, numPairs = int(lines[0].split()[0]), int(lines[0].split()[1])
lines = lines[1:]
#Make train and val splits
N = len(lines)
trainNum = int(np.ceil(0.95 * N))
trainLines = lines[0:trainNum]
testLines = lines[trainNum:]
_write_pairs(prms['paths']['pairList']['train'], trainLines, numIm)
_write_pairs(prms['paths']['pairList']['test'] , testLines, numIm)
##
# Get the list of tar files for downloading the image data
process_cities.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录