def test_with_fake_log_prob(self):
np.random.seed(42)
def grad_log_prob(x):
return -(x/2.0 + np.sin(x))*(1.0/2.0 + np.cos(x))
def fake_log_prob(x):
return -(x/5.0 + np.sin(x) )**2.0/2.0
generator = mh_generator(log_density=fake_log_prob,x_start=1.0)
tester = GaussianSteinTest(grad_log_prob,41)
selector = SampleSelector(generator, sample_size=1000,thinning=20,tester=tester, max_iterations=5)
data,converged = selector.points_from_stationary()
assert converged is False
test_SampleSelector.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录