def __init__(self, input_shape, output_shape):
self.input_shape = input_shape
self.input = np.zeros((output_shape[0], self.input_shape[0] * self.input_shape[1] *
self.input_shape[2]),dtype=np.float32)
self.output = np.zeros(output_shape, dtype=np.float32)
self.output_raw = np.zeros_like(self.output)
self.output_error = np.zeros_like(self.output)
self.output_average = np.zeros(self.output.shape[1], dtype=np.float32)
self.weights = np.random.normal(0, np.sqrt(2.0 / (self.output.shape[1] + self.input.shape[1])),
size=(self.input.shape[1], self.output.shape[1])).astype(np.float32)
self.gradient = np.zeros_like(self.weights)
self.reconstruction = np.zeros_like(self.weights)
self.errors = np.zeros_like(self.weights)
self.output_ranks = np.zeros(self.output.shape[1], dtype=np.int32)
self.learning_rate = 1
self.norm_limit = 0.1
RankOrderedAutoencoder.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录