def ExpM(self):
"""
Approximate a signal via element-wise exponentiation. As appears in :
S.I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller,
"Deep Neural Networks for Dynamic Range Compression in Mastering Applications,"
in proc. of the 140th Audio Engineering Society Convention, Paris, 2016.
Args:
sTarget: (2D ndarray) Magnitude Spectrogram of the target component
nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
Returns:
mask: (2D ndarray) Array that contains time frequency gain values
"""
print('Exponential mask')
self._mask = np.divide(np.log(self._sTarget.clip(self._eps, np.inf)**self._alpha),\
np.log(self._nResidual.clip(self._eps, np.inf)**self._alpha))
评论列表
文章目录