functions.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:OASIS 作者: j-friedrich 项目源码 文件源码
def estimate_time_constant(y, p=2, sn=None, lags=5, fudge_factor=1.):
    """
    Estimate AR model parameters through the autocovariance function

    Parameters
    ----------
    y : array, shape (T,)
        One dimensional array containing the fluorescence intensities with
        one entry per time-bin.
    p : positive integer
        order of AR system
    sn : float
        sn standard deviation, estimated if not provided.
    lags : positive integer
        number of additional lags where he autocovariance is computed
    fudge_factor : float (0< fudge_factor <= 1)
        shrinkage factor to reduce bias

    Returns
    -------
    g : estimated coefficients of the AR process
    """

    if sn is None:
        sn = GetSn(y)

    lags += p
    xc = axcov(y, lags)
    xc = xc[:, np.newaxis]

    A = scipy.linalg.toeplitz(xc[lags + np.arange(lags)],
                              xc[lags + np.arange(p)]) - sn**2 * np.eye(lags, p)
    g = np.linalg.lstsq(A, xc[lags + 1:])[0]
    gr = np.roots(np.concatenate([np.array([1]), -g.flatten()]))
    gr = (gr + gr.conjugate()) / 2.
    gr[gr > 1] = 0.95 + np.random.normal(0, 0.01, np.sum(gr > 1))
    gr[gr < 0] = 0.15 + np.random.normal(0, 0.01, np.sum(gr < 0))
    g = np.poly(fudge_factor * gr)
    g = -g[1:]

    return g.flatten()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号