def kl_train(z,prior,posterior,hps):
# push prior through AR layer
logqs = posterior.logps(z)
if hps.n_flow > 0:
nice_layers = []
print('Does this print')
for i in range(hps.n_flow):
nice_layers.append(nice_layer(tf.shape(z),hps,'nice{}'.format(i),ar=hps.ar))
for i,layer in enumerate(nice_layers):
z,log_det = layer.forward(z)
logqs += log_det
# track the KL divergence after transformation
logps = prior.logps(z)
kl = logqs - logps
return z, kl
### Autoregressive layers
评论列表
文章目录