def sim_target_supervised(target_data, target_labels, sigma, idx, target_params):
cur_labels = target_labels[idx]
N = cur_labels.shape[0]
N_labels = len(np.unique(cur_labels))
Gt, mask = np.zeros((N, N)), np.zeros((N, N))
for i in range(N):
for j in range(N):
if cur_labels[i] == cur_labels[j]:
Gt[i, j] = 0.8
mask[i, j] = 1
else:
Gt[i, j] = 0.1
mask[i, j] = 0.8 / (N_labels - 1)
return np.float32(Gt), np.float32(mask)
评论列表
文章目录