def get_preds_true_for_task(self,train_tasks, test_tasks, param_dict):
t = param_dict['task_num']
X = train_tasks[t]['X']
y = train_tasks[t]['Y']
test_X = test_tasks[t]['X']
true_y = list(test_tasks[t]['Y'].flatten())
if len(y)==0 or len(X)==0 or len(test_X) == 0 or len(true_y)==0:
return None, None
if self.cant_train_with_one_class and len(np.unique(y))==1:
preds = list(np.unique(y)[0]*np.ones(len(true_y)))
else:
preds = self.train_and_predict_task(t, X, y, test_X, param_dict)
return preds, true_y
generic_wrapper.py 文件源码
python
阅读 39
收藏 0
点赞 0
评论 0
评论列表
文章目录