def get_normalized_dispersion(mat_mean, mat_var, nbins=20):
mat_disp = (mat_var - mat_mean) / np.square(mat_mean)
quantiles = np.percentile(mat_mean, np.arange(0, 100, 100 / nbins))
quantiles = np.append(quantiles, mat_mean.max())
# merge bins with no difference in value
quantiles = np.unique(quantiles)
if len(quantiles) <= 1:
# pathological case: the means are all identical. just return raw dispersion.
return mat_disp
# calc median dispersion per bin
(disp_meds, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, mat_disp, statistic='median', bins=quantiles)
# calc median absolute deviation of dispersion per bin
disp_meds_arr = disp_meds[disp_bins-1] # 0th bin is empty since our quantiles start from 0
disp_abs_dev = abs(mat_disp - disp_meds_arr)
(disp_mads, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, disp_abs_dev, statistic='median', bins=quantiles)
# calculate normalized dispersion
disp_mads_arr = disp_mads[disp_bins-1]
disp_norm = (mat_disp - disp_meds_arr) / disp_mads_arr
return disp_norm
评论列表
文章目录