def PCA(data, num_components=None):
# mean center the data
data -= data.mean(axis=0)
# calculate the covariance matrix
R = np.cov(data, rowvar=False)
# calculate eigenvectors & eigenvalues of the covariance matrix
# use 'eigh' rather than 'eig' since R is symmetric,
# the performance gain is substantial
V, E = np.linalg.eigh(R)
# sort eigenvalue in decreasing order
idx = np.argsort(V)[::-1]
E = E[:,idx]
# sort eigenvectors according to same index
V = V[idx]
# select the first n eigenvectors (n is desired dimension
# of rescaled data array, or dims_rescaled_data)
E = E[:, :num_components]
# carry out the transformation on the data using eigenvectors
# and return the re-scaled data, eigenvalues, and eigenvectors
return np.dot(E.T, data.T).T, V, E
fisher_iris_visualization.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录