def mean_variance_normalisation(h5f, mvn_h5f, vad=None):
"""Do mean variance normlization. Optionnaly use a vad.
Parameters:
----------
h5f: str. h5features file name
mvn_h5f: str, h5features output name
"""
dset = h5py.File(h5f).keys()[0]
if vad is not None:
raise NotImplementedError
else:
data = h5py.File(h5f)[dset]['features'][:]
features = data
epsilon = np.finfo(data.dtype).eps
mean = np.mean(data)
std = np.std(data)
mvn_features = (features - mean) / (std + epsilon)
shutil.copy(h5f, mvn_h5f)
h5py.File(mvn_h5f)[dset]['features'][:] = mvn_features
generate_features.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录