def process(dic, p, s = 0, normalize = 1.0):
#x = [5000, 10000, 20000, 40000, 80000, 150000]
#x = [1000, 5000, 10000]
a = ['vs_true', 'vs_false', 'tc', 'mv']
data = {}
for algo in a:
y = zip(*dic[(p, algo)])[s]
m = np.mean(y)
sd = np.std(y)
print p, algo, "%.4f" % (m/normalize) #, "%.2f" % sd
data[algo] = np.asarray(y) * 1.0 / normalize
#print data[algo]
#print data['mv']
print 'vsfalse', scipy.stats.ttest_1samp(data['tc'] - data['vs_false'], 0)
print 'tc', scipy.stats.ttest_1samp(data['tc'] - data['vs_true'], 0)
print 'mv', scipy.stats.ttest_1samp(data['mv'] - data['vs_true'], 0)
评论列表
文章目录