def __init__(self,
saved_model=None,
train_folder=None,
feature=_feature.__func__):
"""
:param saved_model: optional saved train set and labels as .npz
:param train_folder: optional custom train data to process
:param feature: feature function - compatible with saved_model
"""
self.feature = feature
if train_folder is not None:
self.train_set, self.train_labels, self.model = \
self.create_model(train_folder)
else:
if cv2.__version__[0] == '2':
self.model = cv2.KNearest()
else:
self.model = cv2.ml.KNearest_create()
if saved_model is None:
saved_model = TRAIN_DATA+'raw_pixel_data.npz'
with np.load(saved_model) as data:
self.train_set = data['train_set']
self.train_labels = data['train_labels']
if cv2.__version__[0] == '2':
self.model.train(self.train_set, self.train_labels)
else:
self.model.train(self.train_set, cv2.ml.ROW_SAMPLE,
self.train_labels)
评论列表
文章目录