def getScaledE(self, params, i, E):
if (self.prevHyp0Params is not None and np.abs(self.prevHyp0Params[i]-params[i]) < self.epsilon): return self.cache['E_scaled'][i]
if ('E_scaled' not in self.cache.keys()): self.cache['E_scaled'] = [None for j in xrange(len(self.kernels))]
for j in xrange(len(self.kernels)):
if (self.prevHyp0Params is not None and np.abs(self.prevHyp0Params[j]-params[j]) < self.epsilon): continue
E_scaled = E[:,:,j+1]*np.exp(2*params[j])
self.cache['E_scaled'][j] = E_scaled
self.prevHyp0Params = params.copy()
return self.cache['E_scaled'][i]
评论列表
文章目录