general_utils.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码
def get_minibatches(data, minibatch_size, shuffle=True):
    """
    Iterates through the provided data one minibatch at at time. You can use this function to
    iterate through data in minibatches as follows:

        for inputs_minibatch in get_minibatches(inputs, minibatch_size):
            ...

    Or with multiple data sources:

        for inputs_minibatch, labels_minibatch in get_minibatches([inputs, labels], minibatch_size):
            ...

    Args:
        data: there are two possible values:
            - a list or numpy array
            - a list or tuple where each element is either a list or numpy array
        minibatch_size: the maximum number of items in a minibatch
        shuffle: whether to randomize the order of returned data
    Returns:
        minibatches: the return value depends on data:
            - If data is a list/array it yields the next minibatch of data.
            - If data a list of lists/arrays it returns the next minibatch of each element in the
              list. This can be used to iterate through multiple data sources
              (e.g., features and labels) at the same time.

    """
    list_data = isinstance(data, (list, tuple)) and isinstance(data[0], (list,np.ndarray))
    data_size = len(data[0]) if list_data else len(data)
    indices = np.arange(data_size)
    if shuffle:
        np.random.shuffle(indices)
    for minibatch_start in np.arange(0, data_size, minibatch_size):
        minibatch_indices = indices[minibatch_start:minibatch_start + minibatch_size]
        yield [minibatch(d, minibatch_indices) for d in data] if list_data \
            else minibatch(data, minibatch_indices)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号