def summary(self):
s = OrderedDict()
s['source kind'] = self.sourcekind
s['source'] = self.source
if self.params is not None:
for param, value in self.params._asdict().items():
s['parameter: %s' % param] = value
s['log-variance theoretical half-life'] = self.params.logvarhalflife()
s['log-variance theoretical unconditional s.d.'] = np.sqrt(self.params.logvaruncondvar())
s['log-return sample mean'] = np.mean(self.svdf['logreturn'])
s['log-return sample s.d.'] = np.sqrt(np.var(self.svdf['logreturn']))
if 'logvar' in self.svdf.columns:
s['log-variance sample mean'] = np.mean(self.svdf['logvar'])
s['log-variance sample s.d.'] = np.sqrt(np.var(self.svdf['logvar']))
s['correlation timing'] = self.cortiming
s['log-return forward?'] = self.logreturnforward
s['log-return scale'] = self.logreturnscale
return s
评论列表
文章目录