def display_results_figure(results, METRIC):
import pylab as pb
color = iter(pb.cm.rainbow(np.linspace(0, 1, len(results))))
plots = []
for method in results.keys():
x = []
y = []
for train_perc in sorted(results[method].keys()):
x.append(train_perc)
y.append(results[method][train_perc][0])
c = next(color)
(pi, ) = pb.plot(x, y, color=c)
plots.append(pi)
from matplotlib.font_manager import FontProperties
fontP = FontProperties()
fontP.set_size('small')
pb.legend(plots, map(method_name_mapper, results.keys()),
prop=fontP, bbox_to_anchor=(0.6, .65))
pb.xlabel('#Tweets from target rumour for training')
pb.ylabel('Accuracy')
pb.title(METRIC.__name__)
pb.savefig('incrementing_training_size.png')
评论列表
文章目录