def gaussian_kernel(size, std=1.):
size2 = 1 + 2 * size
kernel = np.zeros((size2, size2))
den = 2. * std * std
for row in range(size2):
for col in range(size2):
x = row - size
y = row - size
kernel[row, col] = np.exp(-(x*x + y*y) / den)
kernel /= kernel.sum()
return kernel
# TODO: check out of bounds
评论列表
文章目录