def tp_filter(X, Y, feat_num=1000, verbose=True):
''' TP feature selection in the spirit of the winners of the KDD cup 2001
Only for binary classification and sparse matrices'''
if issparse(X) and len(Y.shape)==1 and len(set(Y))==2 and (sum(Y)/Y.shape[0])<0.1:
if verbose: print("========= Filtering features...")
Posidx=Y>0
#npos = sum(Posidx)
#Negidx=Y<=0
#nneg = sum(Negidx)
nz=X.nonzero()
mx=X[nz].max()
if X[nz].min()==mx: # sparse binary
if mx!=1: X[nz]=1
tp=csr_matrix.sum(X[Posidx,:], axis=0)
#fn=npos-tp
#fp=csr_matrix.sum(X[Negidx,:], axis=0)
#tn=nneg-fp
else:
tp=np.sum(X[Posidx,:]>0, axis=0)
#tn=np.sum(X[Negidx,:]<=0, axis=0)
#fn=np.sum(X[Posidx,:]<=0, axis=0)
#fp=np.sum(X[Negidx,:]>0, axis=0)
tp=np.ravel(tp)
idx=sorted(range(len(tp)), key=tp.__getitem__, reverse=True)
return idx[0:feat_num]
else:
feat_num = X.shape[1]
return range(feat_num)
评论列表
文章目录