def KMO(data):
cor_ = pd.DataFrame.corr(data)
invCor = np.linalg.inv(cor_)
rows = cor_.shape[0]
cols = cor_.shape[1]
A = np.ones((rows, cols))
for i in range(rows):
for j in range(i, cols):
A[i, j] = - (invCor[i, j]) / (np.sqrt(invCor[i, i] * invCor[j, j]))
A[j, i] = A[i, j]
num = np.sum(np.sum((cor_)**2)) - np.sum(np.sum(np.diag(cor_**2)))
den = num + (np.sum(np.sum(A**2)) - np.sum(np.sum(np.diag(A**2))))
kmo = num / den
return kmo
评论列表
文章目录