def monitor(data_feeder):
"""
Cost and time of test_fn on a given dataset section.
Pass only one of `valid_feeder` or `test_feeder`.
Don't pass `train_feed`.
:returns:
Mean cost over the input dataset (data_feeder)
Total time spent
"""
_total_time = time()
_h0 = numpy.zeros((BATCH_SIZE, N_RNN, H0_MULT*DIM), dtype='float32')
_big_h0 = numpy.zeros((BATCH_SIZE, N_RNN, H0_MULT*BIG_DIM), dtype='float32')
_costs = []
_data_feeder = load_data(data_feeder)
for _seqs, _reset, _mask in _data_feeder:
_cost, _big_h0, _h0 = test_fn(_seqs, _big_h0, _h0, _reset, _mask)
_costs.append(_cost)
return numpy.mean(_costs), time() - _total_time
评论列表
文章目录