def skewedGauss(mu, sigma, bounds, upperSkewed=True):
raw = gauss(mu, sigma)
# Quicker to check an extra condition than do unnecessary math. . . .
if raw < mu and not upperSkewed:
out = ((mu - bounds[0]) / (3 * sigma)) * raw + ((mu * (bounds[0] - (mu - 3 * sigma))) / (3 * sigma))
elif raw > mu and upperSkewed:
out = ((mu - bounds[1]) / (3 * -sigma)) * raw + ((mu * (bounds[1] - (mu + 3 * sigma))) / (3 * -sigma))
else:
out = raw
return out
# @todo create a def for generating an alpha and beta for a beta distribution
# given a mu, sigma, and an upper and lower bound. This proved faster in
# profiling in addition to providing a much better distribution curve
# provided multiple iterations happen within this function; otherwise it was
# slower.
# This might be a scratch because of the bounds placed on mu and sigma:
#
# For alpha > 1 and beta > 1:
# mu^2 - mu^3 mu^3 - mu^2 + mu
# ----------- < sigma < ----------------
# 1 + mu 2 - mu
#
##def generateBeta(mu, sigma, scale, repitions=1):
## results = []
##
## return results
# Creates rock objects:
评论列表
文章目录