def _bootstraped():
def worker(n=1000,
mu1=10, sigma1=1,
mu2=10.2, sigma2=1):
def g(mu, sigma):
return random.gauss(mu, sigma)
x = [g(mu1, sigma1) for i in range(n)]
y = [g(mu2, sigma2) for i in range(n)]
return n, mu1, sigma1, mu2, sigma2, \
'different' if bootstrap(x, y) else 'same'
# very different means, same std
print worker(mu1=10, sigma1=10,
mu2=100, sigma2=10)
# similar means and std
print worker(mu1=10.1, sigma1=1,
mu2=10.2, sigma2=1)
# slightly different means, same std
print worker(mu1=10.1, sigma1=1,
mu2=10.8, sigma2=1)
# different in mu eater by large std
print worker(mu1=10.1, sigma1=10,
mu2=10.8, sigma2=1)
评论列表
文章目录