def gen_training_data(
num_features,
num_training_samples,
num_outputs,
noise_scale=0.1,
):
np.random.seed(0)
random.seed(1)
input_distribution = stats.norm()
training_inputs = input_distribution.rvs(
size=(num_training_samples, num_features)
).astype(np.float32)
weights = np.random.normal(size=(num_outputs, num_features)
).astype(np.float32).transpose()
noise = np.multiply(
np.random.normal(size=(num_training_samples, num_outputs)), noise_scale
)
training_outputs = (np.dot(training_inputs, weights) +
noise).astype(np.float32)
return training_inputs, training_outputs, weights, input_distribution
评论列表
文章目录