def _generator(self):
B = self.batch_size
while True:
if self.shuffle:
self.reader.random_shuffle()
remaining = self.n_examples
while remaining > 0:
current_size = min(self.chunk_size, remaining)
remaining -= current_size
(data, ts, labels, header) = read_chunk(self.reader, current_size)
data = preprocess_chunk(data, ts, self.discretizer, self.normalizer)
data = (data, labels)
data = common_utils.sort_and_shuffle(data, B)
for i in range(0, current_size, B):
yield (nn_utils.pad_zeros(data[0][i:i + B]),
np.array(data[1][i:i + B]))
评论列表
文章目录