def reorder_bpr_loss(re_x, his_x, dynamic_user, item_embedding, config):
'''
loss function for reorder prediction
re_x padded reorder baskets
his_x padded history bought items
'''
nll = 0
ub_seqs = []
for u, h, du in zip(re_x, his_x, dynamic_user):
du_p_product = torch.mm(du, item_embedding.t()) # shape: max_len, num_item
nll_u = [] # nll for user
for t, basket_t in enumerate(u):
if basket_t[0] != 0:
pos_idx = torch.cuda.LongTensor(basket_t) if config.cuda else torch.LongTensor(basket_t)
# Sample negative products
neg = [random.choice(h[t]) for _ in range(len(basket_t))] # replacement
# neg = random.sample(range(1, config.num_product), len(basket_t)) # without replacement
neg_idx = torch.cuda.LongTensor(neg) if config.cuda else torch.LongTensor(neg)
# Score p(u, t, v > v')
score = du_p_product[t - 1][pos_idx] - du_p_product[t - 1][neg_idx]
# Average Negative log likelihood for basket_t
nll_u.append(- torch.mean(torch.nn.LogSigmoid()(score)))
nll += torch.mean(torch.cat(nll_u))
return nll
评论列表
文章目录