def load_model(file_path):
with open(file_path, "r") as f:
decision_trees, sparse_features, total_feature_count = load(f)
dts = {}
for key in decision_trees.keys():
dts[key] = []
for dt in decision_trees[key]:
d = DecisionTree([])
for k in dt['model'].keys():
setattr(d, k, dt['model'][k])
dt['model'] = d
dts[key].append(dt)
return ClassificationEngine(
decision_trees=dts,
sparse_features=sparse_features,
total_feature_count=total_feature_count
)
评论列表
文章目录